

Biophysical Chemistry 72 (1998) 123-129

Biophysical Chemistry

Ca²⁺ wave dispersion and spiral wave entrainment in *Xenopus laevis* oocytes overexpressing Ca²⁺ ATPases

James D. Lechleiter^{a,*}, Linu M. John^b, Patricia Camacho^c

^aDepartment of Molecular Medicine / Institute of Biotechnology, 15355 Lambda Drive, University of Texas HSC, San Antonio, TX 78245, USA
^bDepartment of Biomedical Engineering, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
^cDepartment of Physiology, 7703 Floyd Curl Drive, University of Texas HSC at San Antonio, San Antonio, TX 78245, USA

Revision received 12 January 1998; accepted 13 February 1998

Abstract

Complex, spatiotemporal patterns of intracellular Ca^{2+} release in *Xenopus* oocytes can be accounted for by the operation of two fundamental processes: Ca^{2+} release from the endoplasmic reticulum (ER) via the inositol 1,4,5-trisphosphate receptor (IP₃R) with its inherent dependency on cytosolic Ca^{2+} , and Ca^{2+} uptake via Ca^{2+} ATPases. Overexpression of sarco-endoplasmic reticulum Ca^{2+} ATPases (SERCAs) in *Xenopus* oocytes, increases IP₃-induced Ca^{2+} wave frequency and amplitude [1–3]. This effect can be attributed to an increased removal of cytoplasmic Ca^{2+} and more efficient refilling of Ca^{2+} stores. By overexpressing SERCA isoforms, we report here that Ca^{2+} waves exhibit dispersion [4–6]. At wavelengths greater than 60 μ m, wave velocity is constant. However, wave velocity and amplitude progressively decreases at smaller wavelengths. Below $\lambda \sim 20 \mu$ m, Ca^{2+} waves disperse and fail to propagate. In oocytes exhibiting both spiral and target patterns of Ca^{2+} release, spiral waves had higher frequencies and showed entrainment of the surrounding regions. These properties are characteristic of a classical excitable medium [4–6]. © 1998 Elsevier Science B.V. All rights reserved

Keywords: Ca²⁺ oscillations; Inositol; Oocytes; Excitable media

1. Introduction and background

Inositol 1,4,5-trisphosphate (IP₃)-induced intracellular Ca²⁺ release plays a key role in the action of many hormone and neurotransmitter pathways [7–10]. Cell growth, differentiation, secretion and contraction are processes controlled by Ca²⁺ signaling. It is well established that the mechanism of Ca²⁺ release begins with G-protein or tyrosine kinase mediated activation of phospholipase C (PLC). At the plasma membrane, PLC, stimulates production of IP₃ which

diffuses into the cytosol where it binds to the IP₃ receptor (IP₃ R), releasing Ca²⁺ from endoplasmic reticulum (ER) stores. Ca²⁺ signals produced by hormone activation are complex in spatial and temporal domains [11]. Oscillations in the Ca²⁺ response have been suggested to encode cellular functions [12]. Gu and Spitzer [13] have demonstrated that developmental changes in a K⁺ current, neurite outgrowth, and secretion are dependent on the occurrence of Ca²⁺ oscillations and Ca²⁺ waves. Hajnoczky and Thomas [14] have shown that mitochondrial respiration depends on the frequency of Ca²⁺ waves in hepatocytes. Spatial control of gene expression has also been

^{*} Corresponding author. E-mail: lechleiter@uthscsa.edu

demonstrated in a mouse pituitary cell line (AtT20 cells) where transient increases in nuclear Ca²⁺ control transcription of genes that contain the cyclic AMP responsive element (CRE), while cytosolic Ca²⁺ transients are necessary for the activation of transcription via the serum-response element (SRE) [15]. Thus, in many cases spatial and/or temporal transients in Ca²⁺, rather than a continuous global Ca²⁺ release are required to activate a cellular process.

2. Ca²⁺ release is an excitable process

In Xenopus oocytes, we have described complex spatiotemporal patterns of Ca²⁺ release using confocal microscopy [1-3,16-20]. Depending on the concentration of IP₃, we observe different patterns of Ca²⁺ release. At low IP₃ concentrations (10-50 nM), discrete sites of Ca²⁺ release are observed and have been referred to as Ca2+ 'puffs' [21]. In cardiac cells, where the analogous intracellular Ca²⁺ release channel is the ryanodine receptor, these discrete, elementary events are called Ca²⁺ 'sparks' [22]. At slightly higher concentrations of IP₃ (50–100 nM), abortive Ca²⁺ waves propagate asymetrically and travel only short distances ($\sim 10-50 \mu m$). At high concentrations of IP₃ $(>1-10 \mu M)$, we typically observe a large tide of Ca²⁺ release with no repetitive Ca²⁺ waves. It is only at intermediate concentrations of IP₃ (100 nM to 1 μM) that repetitive complex Ca²⁺ wave patterns are obtained [1,2]. Specifically, we observe propagating Ca²⁺ waves originating at multiple focal sites and generating broken, circular and spiral waves [16,18]. However, the probability of observing these focal sites is higher in the animal pole of the oocyte. Ca²⁺ waves annihilate each other upon collision, revealing an underlying refractory period during which Ca²⁺ release is temporarily inhibited [2]. Furthermore, the waves propagate with undiminished amplitude, suggesting a regenerative mechanism. These fundamental observations are characteristic of an excitable medium [23]. An excitable process is one that undergoes a large excursion away from steady state in response to a suprathreshold stimulus, and returns to steady state before it can respond to a new suprathreshold stimulus. When individual excitable processes are coupled by a common diffusible catalyst, a set of mathematical rules accounts for very complex spatiotemporal pattern formations. Spiral and circular waves are the trademark patterns of excitable media, and are observed in systems ranging from the classic Belousov–Zhabotinsky chemical reaction, to aggregating slime mold in *Dictyostelium discoideum* and electrical activity in neuronal and cardiac tissue [24–27]. Our original discovery [16] of propagating and annihilating spiral Ca²⁺ waves in *Xenopus* oocytes extended the framework of excitability to intracellular Ca²⁺ signaling. Importantly, this concept of Ca²⁺ excitability can also be successfully applied to other cell types as well as to intercellular Ca²⁺ signaling in tissues such as heart, liver, brain and more recently, in the retina [28–32,55].

3. Ca²⁺ -induced Ca²⁺ release (CICR) is the elementary excitable event

The fundamental property responsible for excitability is the Ca²⁺ dependency of the IP₃-bound IP₃R [18]. At low Ca²⁺ concentrations, the IP₃R ion channel is closed, however, its probability of opening increases with increasing cytosolic Ca²⁺ concentrations [33– 36]. Consequently, Ca2+ ions released from the open IP₃R act to further increase the open probability of the channel. This positive feedback loop is referred to as Ca²⁺-induced Ca²⁺ release (CICR). At high Ca²⁺ concentrations, the probability of channel opening decreases leading to inactivation [33-36]. It has been suggested that inhibition of the IP₃R may be mediated by an accessory protein called calmedin [37,38]. Both activation (channel opening) and inactivation (channel closing) of the IP₃R are faster at higher Ca²⁺ levels [35]. These strongly non-linear properties of the IP₃R constitute fundamental feedback mechanisms ultimately responsible for complex Ca²⁺ wave activity.

Ca²⁺ diffusion, together with the process of CICR serves to couple individual Ca²⁺ release sites (Ca²⁺ puffs or sparks) into an excitable medium which can propagate Ca²⁺ waves. However, wave propagation is only successful when the density of IP₃-bound IP₃Rs (excitable sites) is sufficiently high so that Ca²⁺ released from one receptor can diffuse to neighboring receptors. The amount of Ca²⁺ released and the distance to the nearest excitable IP₃R are rate limiting steps in this process. Reducing IP₃R channel inactivation will increase the amount of Ca²⁺ released and will

thereby increase the likelihood of continuous wave propagation. The distance to the nearest IP₃-bound IP₃R can also be decreased by increasing the concentration of IP₃ (assuming that the channels are not saturated). We suggest that the increasing occupation of IP₃Rs by IP₃ underlies the continuous progression from Ca²⁺ sparks/puffs to asymmetric abortive Ca²⁺ waves, and from the later to a continuous Ca2+ wave. The amount of Ca2+ released during a Ca2+ spark/puff appears to be too large to be attributed to Ca²⁺ release through a single receptor protein [39,40]. Thus, these events are presumably due to the activation of a few receptors in a cluster acting as a functional unit. Ca2+ release from single IP3Rs or ryanodine receptors are referred to as blips and quarks, respectively [40]. If the Ca²⁺ release which initiates a Ca2+ wave originates from a cluster of receptors, then the distance between IP₃R clusters and the activation state of neighboring clusters will be important in determining whether wave propagation is successful.

4. The role of Ca²⁺ ATPases (SERCAs)

Once Ca²⁺ is released into the cytosol, resting Ca²⁺ levels are restored by pumping Ca²⁺ either across the plasma membrane [41] or back into the sarco-endoplasmic reticulum stores [42]. Here, we focus on the sarco-endoplasmic reticulum Ca²⁺-ATPases (SER-CAs). Three distinct genes have been cloned (SER-CAs 1, 2 and 3) with alternatively spliced variants (SERCA 1a and 1b; SERCA 2a and 2b) [43-48]. Lytton et al. [49] have studied the Ca²⁺ sensitivity and transport capacities of all SERCAs by overexpression in COS cells. The SERCA 2b isoform is expressed in non-muscle and has the highest affinity for Ca^{2+} ($K_D \sim 200$ nM) while having also the lowest transport capacity of all ATPases. SERCAs 1 and 2a have comparable Ca^{2+} affinities ($K_D \sim 400 \text{ nM}$) and are expressed in fast skeletal muscle and cardiac/slow twitch muscles, respectively. Finally, SERCA 3 which is particularly abundant in thymus, intestine and cerebellum, has the lowest sensitivity to cytosolic $Ca^{2+}(K_D \sim 1 \mu M)$. SERCA 3 has a unique ER signaling target which is not shared by other isoforms and has been suggested to reside in a ER subcompartment which is chronically elevated with Ca²⁺ [50]. Preliminary experiments suggest that SERCA 2b and SERCA 3 are the isoforms endogenously expressed in *Xenopus* oocytes (J. Lytton, pers. commun.).

5. Overexpression of SERCA isoforms in *Xenopus* oocytes

As we mention above, injections of IP₃ at intermediate concentrations (~100–300 nM) elicit distinctive Ca²⁺ wave patterns. This activity is characterized by the appearance of an initial tidal wave of Ca²⁺ which is followed by oscillatory waves with a periodicity of ~10 s (Fig. 1). Overexpression of the fast twitch skeletal muscle SERCA1 isoform results in Ca²⁺ oscillations of higher frequency without a preceding tidal wave [1]. Two-three days following mRNA injections, a two-three-fold increase in frequency is observed (wave period ~4 s). In addition to changes in wave frequency, SERCA1 overexpression resulted in an ~two-fold increase in the amplitude of individual waves at peak activity [1].

6. Ca²⁺ wave dispersion and spiral entrainment in oocytes overexpressing SERCAs

In an excitable medium, wave dispersion occurs when consecutive waves propagate into regions which have recently been excited and hence are still refractory [4–6]. The frequency at which dispersion begins to occur provides an estimate of the refractory period of the underlying excitatory event. As the wave frequency increases beyond this value, an increasing number of refractory Ca²⁺ release sites is encountered and more time is needed to reach the excitation threshold. This leads to a continual decrease in wave velocity and amplitude as the frequency increases. Eventually, the number of active receptors decreases to a point where wave propagation cannot be supported and dispersion occurs.

The Ca²⁺ wave frequency in oocytes uninjected with mRNA is not sufficiently high to affect wave velocity. Fig. 1 shows a control oocyte in which the velocity of wave propagation remained constant at ~19.0 μ m/s as the wavelength decreased from ~100 to 60 μ m (average periodicity of ~10 s). Similar results were obtained in other oocytes (n = 48),

where the period between consecutive waves varied between 6-13 s and the wave velocity remained constant at ~20 μ m/s. The wavelength in these oocytes varied from 60 μ m to over 200 μ m. Similarly, when IP₃-induced Ca²⁺ wave activity is measured 2–3 days after SERCA1 mRNA injections, we also observed no variance in velocity over the measured wave frequencies. The wave velocity averaged 21.5 μ m/s with period of ~4 s [1]. These data indicated that the underlying refractory period must be less than 4 s.

We were able to further increase the Ca²⁺ wave frequency up to five-fold over control oocytes when

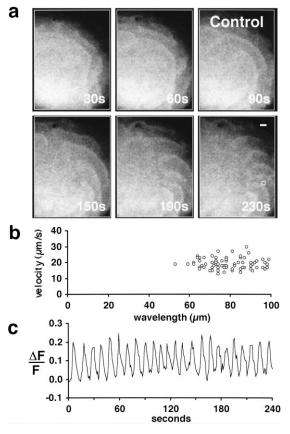


Fig. 1. Ca^{2+} wave activity in a control oocyte does not show the dispersion phenomenon. (a) Ca^{2+} activity was induced by a 50 nl bolus injection of IP_3 (final concentration ~300 nM). Confocal images of Ca^{2+} waves are shown for images taken at times indicated. The scale bar in frame 230 s is 50 μm . (b) Scatter plot of wave velocities as a function of wavelength. Average velocity is 18.8 $\mu\text{m/s}$. (c) Line plot of Ca^{2+} wave intensity for the 5 × 5 pixel square shown in frame 230 s. Ca^{2+} concentration is expressed as $\Delta\text{F/F}_{\text{rest}}$, where $\Delta\text{F} = \text{F} - \text{F}_{\text{rest}}$. The wave period during these measurements averaged ~10 s.

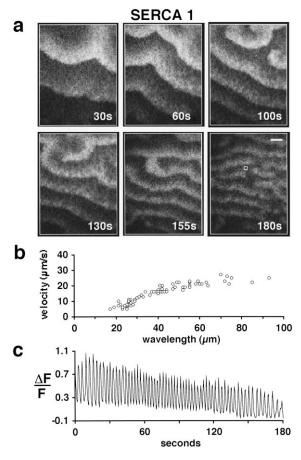


Fig. 2. Repetitive Ca^{2+} wave activity in an oocyte overexpressing SERCA 1 shows wave dispersion. (a) Images of repetitive Ca^{2+} waves at high magnification (40× objective lens). IP₃ concentration is ~300 nM (final). Scale bar is 20 μ m. (b) Scatter plot of wave velocities shows a decrease in velocity as the wavelength decreases. (c) Line plot of Ca^{2+} concentration for the 5 × 5 pixel square shown in frame 180 s. The wave period is ~2.8 s during the first 60 s and ~3.1 s during the final 60 s.

we changed the expression vector for the SERCA1 to include the 5' and 3' untranslated regions of *Xenopus* β -globin gene [3]. In addition, we waited longer (5–7 days after mRNA injections) before Ca²⁺ wave activity was induced by IP₃ injections and analyzed. These procedures increased oocyte SERCA1 expression such that the Ca²⁺ wave periods decreased to between 1.5 and 3 s. At these wave frequencies, we observed a progressive reduction in both wave amplitude and velocity (Fig. 2), which is indicative of wave dispersion. It has previously been reported that SERCA 1 and SERCA 2a have similar biophysical properties

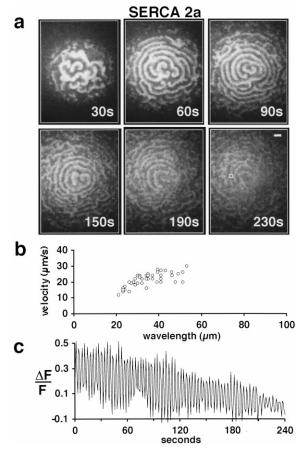


Fig. 3. Ca^{2+} wave dispersion in an oocyte overexpressing SERCA 2a. (a) Individual confocal images of Ca^{2+} wave activity. IP₃ concentration is ~300 nM (final). Scale bar is 50 μ m. (b) Scatter plot of wave velocities. (c) Line plot of Ca^{2+} concentration for the 5 × 5 pixel square shown in frame 230s. The wave period is 3.3 s during the first 120 s and 3.5 s during the final 120 s.

when overexpressed in COS cells [49]. Similar to SERCA1 expressing oocytes, Ca²⁺ wave dispersion was detected (Fig. 3). These data indicate that the refractory period value of the underlying excitatory event is approximately 3 s.

We also investigated IP₃-induced Ca²⁺ waves in oocytes expressing high levels of SERCA 2b, using the same protocols as for SERCAs 1 and 2a. Interestingly, the IP₃-induced Ca²⁺ wave frequencies were not as high as those observed in SERCA 1 or 2a expressing oocytes, consistent with the lower transport capacity of SERCA 2b [49]. Ca²⁺ wave periods varied between 2 and 4 s. However, SERCA 2b expressing oocytes still exhibited Ca²⁺ wave dispersion with

interwave periods as high as 4 s (Fig. 4). These data suggest that the refractory period may be as long as 4 s. One explanation of these data is that the underlying refractory event cannot begin to reset until Ca^{2+} levels return to baseline levels. Since SERCA 2b has a lower transport capacity, cytoplasmic Ca^{2+} following a wave returns to baseline more slowly. Hence, the overall time that is needed for recovery is longer. Alternatively, the higher amplitude of SERCA 2b vs. SERCA 2a and 1 Ca^{2+} waves (cf Figs. 2, 3 and 4) may cause IP_3Rs to inactivate for longer periods of

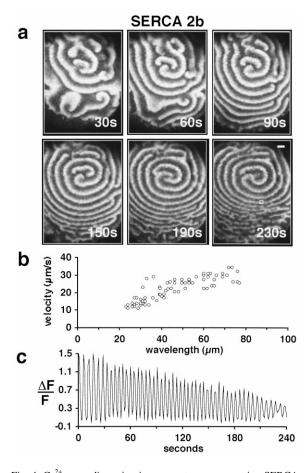


Fig. 4. Ca^{2+} wave dispersion in an oocyte overexpressing SERCA 2b. (a) Images of repetitive Ca^{2+} waves are collected under the same conditions in Fig. 3. (b) Scatter plot of wave velocities shows a reduction in wave velocity as the wavelength decreases. (d) Line plot of Ca^{2+} concentration (5 × 5 pixel square shown in frame 230 s) shows a decrease in wave amplitude as a function of time. The wave period is 4.6 s during the first 120 s and 4.8 s during the final 120 s.

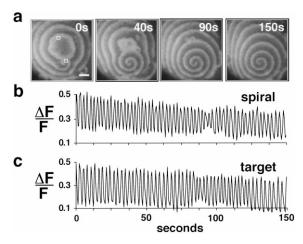


Fig. 5. Spiral wave entrainment in an oocyte overexpressing SERCA 2b. (a) Images of IP₃-induced Ca²⁺ wave activity. Oocyte was injected with IP₃ (300 nM final) 3 min before the first image shown (labeled at time = 0 s). Scale bar is 100 μ m. (b) Line plots of Ca²⁺ wave intensity at the 5 × 5 pixel squares shown in frame 0 s for the spiral pattern (b, period ~2.56 s) and for the target pattern (c, period ~2.68 s). Ca²⁺ intensity is expressed as Δ F/F. Intensity measurements were made at 0.5-s intervals.

time. Finch et al. [35] have reported a Ca^{2+} dependence for IP_3R inactivation.

In some oocytes overexpressing SERCAs, IP₃ injections resulted in the simultaneous presence of both spiral and target patterns of Ca²⁺ waves. For the oocyte shown in Fig. 5, the spiral wave had a periodicity of ~2.564 s while the target pattern had a period of ~2.679 s. Over time, the spiral wave in this oocyte spatially dominated the entire area. The same phenomenon, called entrainment, was observed and analyzed in a second oocyte with slightly slower wave frequencies. In this oocyte, the spiral and target patterns had periods of 3.278 s and 3.448 s, respectively. As with the first oocyte (Fig. 5), the spiral pattern enveloped the entire oocyte within 3 min. This entrainment can be attributed to the slightly higher frequency of the spiral wave over the target wave pattern.

7. Discussion

The classic role attributed to the endoplasmic reticulum (ER) Ca²⁺ ATPases has been that of refilling and maintaining intracellular Ca²⁺ stores. Our data demonstrate that Ca²⁺ pumps also dynamically mod-

ulate the release of Ca²⁺ into the cytosol. Overexpression of SERCA isoforms in the oocyte, increased wave amplitudes and frequencies for SERCAs 1, 2a and 2b when compared to control oocytes (nonmRNA injected). We suggest that the increase in wave amplitude is due to an increase in the Ca2+ store content. Thus, when an IP₃R channel opens, the Ca²⁺ flux is larger due to a larger driving force. This increased Ca²⁺ flux contributes to an increase in wave frequency since less time is now required for cytosolic Ca²⁺ levels to exceed excitation threshold levels. We previously defined excitation threshold as the point at which more Ca²⁺ is released via CICR than is re-sequestered by the Ca²⁺ ATPases into the Ca²⁺ stores. Hence, the positive feedback of CICR results in a large non-linear increase in cytosolic Ca²⁺ [2].

An interesting consequence of increased wave frequencies is that Ca²⁺ wave dispersion can now be observed in oocytes. For all three SERCA subtypes (1, 2a and 2b), we observed a dependence of wave velocity on wave spacing. The minimal distance between waves that we observe is ~20 µm. Interestingly, the drop off in wave velocity appears linear for some oocytes (Figs. 3 and 4). This may be due to the limitation in spatial resolution since higher magnification shows a non-linear fall off (Fig. 2). Alternatively, a linear relationship between wavelength and velocity is suggestive of the kinematic waves described by Jafri and Keizer [51]. Model simulation by these authors indicate that the diffusion of Ca²⁺ may play only a minor role in Ca²⁺ wave propagation and under certain conditions, Ca²⁺ waves may be primarily kinematic in nature, dependent on the phase differences between oscillators at different spatial points. Consistent with this model, Hagan [52] theoretically proved the existence of spiral wave solutions for reactiondiffusion systems close to a Hopf bifurcation. Finally, we have determined experimental boundaries in which Ca²⁺ wave dispersion occurs. In Xenopus oocytes, it is clear that Ca²⁺ wave dispersion is supported when the system oscillates with a periodicity lower than 4 s.

The existence of a refractory period leads to the prediction of Ca²⁺ wave entrainment. In this phenomenon, high frequency waves overtake low frequency waves (Fig. 5). Spiral entrainment has potentially important implications for the encoding of signals in biological systems. Specifically, a Ca²⁺ signal

encoded in the temporal domain (frequency) can be transduced into a spatial domain. Consequently, mechanisms which alter the expression levels of Ca²⁺-ATPases [53,54] are predicted to greatly affect IP₃-mediated Ca²⁺ signaling.

Acknowledgements

This work was supported by the National Institutes of Health (NIH) with grants to JL (GM48451) and to PC (GM55372)

References

- [1] P. Camacho, and J. Lechleiter, Science 260 (1993) 226.
- [2] P. Camacho, J.D. Lechleiter, in: Calcium Waves, Gradients and Oscillations, C.F. Symposium, Vol. 188, Wiley, Chichester, 1995, p. 66.
- [3] P. Camacho, and J.D. Lechleiter, Cell 82 (1995) 765.
- [4] R.N. Miller, and J. Rinzel, Biophys. J. 34 (1981) 227.
- [5] J.D. Dockery, J.P. Keener, and J.J. Tyson, Physica D 30 (1988) 177.
- [6] M. Gerhardt, H. Schuster, and J.J. Tyson, Science 247 (1990) 1563.
- [7] M.J. Berridge, Nature 361 (1993) 315.
- [8] J.W.J. Putney, and J. Bird, Endocrine Rev. 14 (1993) 610.
- [9] T. Pozzan, R. Rizzuto, P. Volpe, and J. Meldolesi, Physiol. Rev. 74 (1994) 595.
- [10] D.E. Clapham, Cell 80 (1995) 259.
- [11] M.J. Berridge, J. Biol. Chem. 265 (1990) 9583.
- [12] P.E. Rapp, Prog. Neurobiol. 29 (1987) 261.
- [13] X. Gu, and N.C. Spitzer, Nature 375 (1995) 784.
- [14] G. Hajnoczky, L.D. Robb-Gaspers, M.B. Seitz, and A.P. Thomas, Cell 82 (1995) 415.
- [15] G.E. Hardingham, S. Chawla, C.M. Johnson, and H. Bading, Nature 385 (1997) 260.
- [16] J. Lechleiter, S. Girard, E. Peralta, and D. Clapham, Science 252 (1991) 123.
- [17] J. Lechleiter, S. Girard, D. Clapham, and E. Peralta, Nature 350 (1991) 505.
- [18] J.D. Lechleiter, and D.E. Clapham, Cell 69 (1992) 283.
- [19] J.D. Lechleiter, and D.E. Clapham, Scanning 14 (1992) 34.
- [20] L.S. Jouaville, F. Ichas, E.L. Holmuhamedov, P. Camacho, and J.D. Lechleiter, Nature 377 (1995) 438.
- [21] I. Parker, and Y. Yao, Proc. R. Soc. London Ser. B. 246 (1991) 269.
- [22] H. Cheng, W.J. Lederer, and M.B. Cannell, Science 262 (1993) 740.
- [23] A.T. Winfree, in: A.T. Winfree (Ed.), Geometry of Biological Time, Springer-Verlag, New York, 1980, p. 246.
- [24] A.N. Zaikin, and A.M. Zhabotinsky, Nature 225 (1970) 535.

- [25] A.T. Winfree, Science 175 (1972) 634.
- [26] P.N. Devreotes, M.J. Potel, and S.A. Mackay, Dev. Biol. 96 (1983) 405.
- [27] M.A. Allesie, F.I.M. Bonke, and F.J.G. Schopman, Circ. Res. 33 (1973) 54.
- [28] A.H. Cornell-Bell, and S.M. Finkbeiner, Cell Calcium 12 (1991) 185.
- [29] T.A. Rooney, and A.P. Thomas, Cell Calcium 14 (1993) 674.
- [30] P. Lipp, and E. Niggli, Biophys. J. 65 (1993) 2272.
- [31] M.J. Sanderson, A.C. Charles, S. Boitano, and E.R. Dirksen, Mol. Cell. Endocrinol. 98 (1994) 173.
- [32] E.A. Newman, and K.R. Zahs, Science 275 (1997) 844.
- [33] M. Iino, J. Gen. Physiol. 95 (1990) 1103.
- [34] I. Parker, and I. Ivorra, Proc. Natl. Acad. Sci. USA 87 (1990) 260
- [35] E.A. Finch, T.J. Turner, and S.M. Goldin, Science 252 (1991) 443.
- [36] I. Bezprozvanny, J. Watras, and B.E. Ehrlich, Nature 351 (1991) 751.
- [37] S.K. Danoff, S. Supattapone, and S.H. Snyder, Biochem. J. 254 (1988) 701.
- [38] N. Callamaras, and I. Parker, Cell Calcium 15 (1994) 66.
- [39] C.J. Fowler, R.F. Cowburn, A. Garlind, B. Winblad, C. O'Neill, Mol. Cell. Biochem. 149/150 (1995) 287.
- [40] P.-M. Lledo, B. Somasundaram, A.J. Morton, P.C. Emson, and W.T. Mason, Neuron 9 (1992) 943.
- [41] E. Carafoli, Annu. Rev. Physiol. 53 (1991) 531.
- [42] A.K. Grover, and I. Khan, Cell Calcium 13 (1992) 9.
- [43] C.J. Brandl, S. deLeon, D.R. Martin, and D.H. MacLennan, J. Biol. Chem. 262 (1987) 3768.
- [44] A.-M. Gunteski-Hamblin, J. Greeb, and G.E. Shull, J. Biol. Chem. 263 (1988) 15032.
- [45] J. Lytton, and D.H. MacLennan, J. Biol. Chem. 263 (1988) 15024
- [46] J. Lytton, A. Zarain-Herzberg, M. Periasamy, and D.H. MacLennan, J. Biol. Chem. 264 (1989) 7059.
- [47] S.E. Burk, J. Lytton, D.H. MacLennan, and G.E. Shull, J. Biol. Chem. 264 (1989) 18561.
- [48] J.A. Eggermont, F. Wuytack, and R. Casteels, Biochem. J. 266 (1990) 901.
- [49] J. Lytton, M. Westlin, S.E. Burk, G.E. Shull, and D.H. MacLennan, J. Biol. Chem. 267 (1992) 14483.
- [50] K.-D. Wu, W.-S. Lee, J. Wey, D. Bungard, and J. Lytton, Am. J. Physiol. 269 (1995) C775.
- [51] M.S. Jafri, and J. Keizer, Proc. Natl. Acad. Sci. USA 91 (1994) 9485.
- [52] P.S. Hagan, SIAM J. Appl. Math. 42 (1982) 762.
- [53] C. Magnier, B. Oapp, E. Corvazier, R. Bredoux, F. Wuytack, J. Eggermont, J. Maclouf, and J. Enouf, J. Biol. Chem. 267 (1992) 15808.
- [54] A. Zarain-Herzberg, J. Marques, and D. Sukovich, Thyroid hormone receptor modulates the expression of the rabbit cardiac (endo) plasmic reticulum calcium-ATPase gene J. Biol. Chem. 269 (1994) 1460.
- [55] M.E. Harris-White, S.A. Zanotti, S.A. Frautschy, and A.C. Charles, J. Neurophysiol. 79 (1996) 1045–1052.